Unsupervised Dependency Parsing with Acoustic Cues

نویسندگان

  • John K. Pate
  • Sharon Goldwater
چکیده

Unsupervised parsing is a difficult task that infants readily perform. Progress has been made on this task using text-based models, but few computational approaches have considered how infants might benefit from acoustic cues. This paper explores the hypothesis that word duration can help with learning syntax. We describe how duration information can be incorporated into an unsupervised Bayesian dependency parser whose only other source of information is the words themselves (without punctuation or parts of speech). Our results, evaluated on both adult-directed and child-directed utterances, show that using word duration can improve parse quality relative to words-only baselines. These results support the idea that acoustic cues provide useful evidence about syntactic structure for language-learning infants, and motivate the use of word duration cues in NLP tasks with speech.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capitalization Cues Improve Dependency Grammar Induction

We show that orthographic cues can be helpful for unsupervised parsing. In the Penn Treebank, transitions between upperand lowercase tokens tend to align with the boundaries of base (English) noun phrases. Such signals can be used as partial bracketing constraints to train a grammar inducer: in our experiments, directed dependency accuracy increased by 2.2% (average over 14 languages having cas...

متن کامل

Unsupervised Syntactic Chunking with Acoustic Cues: Computational Models for Prosodic Bootstrapping

Learning to group words into phrases without supervision is a hard task for NLP systems, but infants routinely accomplish it. We hypothesize that infants use acoustic cues to prosody, which NLP systems typically ignore. To evaluate the utility of prosodic information for phrase discovery, we present an HMMbased unsupervised chunker that learns from only transcribed words and raw acoustic correl...

متن کامل

An improved joint model: POS tagging and dependency parsing

Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...

متن کامل

Three Dependency-and-Boundary Models for Grammar Induction

We present a new family of models for unsupervised parsing, Dependency and Boundary models, that use cues at constituent boundaries to inform head-outward dependency tree generation. We build on three intuitions that are explicit in phrase-structure grammars but only implicit in standard dependency formulations: (i) Distributions of words that occur at sentence boundaries — such as English dete...

متن کامل

Unsupervised Dependency Parsing: Let's Use Supervised Parsers

We present a self-training approach to unsupervised dependency parsing that reuses existing supervised and unsupervised parsing algorithms. Our approach, called ‘iterated reranking’ (IR), starts with dependency trees generated by an unsupervised parser, and iteratively improves these trees using the richer probability models used in supervised parsing that are in turn trained on these trees. Ou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • TACL

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2013